Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Microorganisms ; 11(5)2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-20232951

ABSTRACT

Rare cases of Pseudomonas aeruginosa community-acquired pneumonia (PA-CAP) were reported in non-immunocompromised patients. We describe a case of Pseudomonas aeruginosa (PA) necrotizing cavitary CAP with a fatal outcome in a 53-year-old man previously infected with SARS-CoV-2, who was admitted for dyspnea, fever, cough, hemoptysis, acute respiratory failure and a right upper lobe opacification. Six hours after admission, despite effective antibiotic therapy, he experienced multi-organ failure and died. Autopsy confirmed necrotizing pneumonia with alveolar hemorrhage. Blood and bronchoalveolar lavage cultures were positive for PA serotype O:9 belonging to ST1184. The strain shares the same virulence factor profile with reference genome PA01. With the aim to better investigate the clinical and molecular characteristics of PA-CAP, we considered the literature of the last 13 years concerning this topic. The prevalence of hospitalized PA-CAP is about 4% and has a mortality rate of 33-66%. Smoking, alcohol abuse and contaminated fluid exposure were the recognized risk factors; most cases presented the same symptoms described above and needed intensive care. Co-infection of PA-influenza A is described, which is possibly caused by influenza-inducing respiratory epithelial cell dysfunction: the same pathophysiological mechanism could be assumed with SARS-CoV-2 infection. Considering the high rate of fatal outcomes, additional studies are needed to identify sources of infections and new risk factors, along with genetic and immunological features. Current CAP guidelines should be revised in light of these results.

2.
Emerg Infect Dis ; 29(4): 831-833, 2023 04.
Article in English | MEDLINE | ID: covidwho-2314119

ABSTRACT

Causes of blackwater fever, a complication of malaria treatment, are not completely clear, and immune mechanisms might be involved. Clinical management is not standardized. We describe an episode of blackwater fever in a nonimmune 12-year-old girl in Italy who was treated with steroids, resulting in a rapid clinical resolution.


Subject(s)
Antimalarials , Blackwater Fever , Malaria, Falciparum , Malaria , Female , Humans , Child , Blackwater Fever/complications , Blackwater Fever/drug therapy , Antimalarials/therapeutic use , Malaria/drug therapy , Italy , Steroids/therapeutic use , Malaria, Falciparum/drug therapy
3.
Infection ; 2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2295150

ABSTRACT

PURPOSE: People with hematologic malignancies have a significantly higher risk of developing severe and protracted forms of SARS-CoV-2 infection compared to immunocompetent patients, regardless of vaccination status. RESULTS: We describe two cases of prolonged SARS-CoV-2 infection with multiple relapses of COVID-19 pneumonia in patients with follicular lymphoma treated with bendamustine and obinutuzumab or rituximab. The aim is to highlight the complexity of SARS-CoV-2 infection in this fragile group of patients and the necessity of evidence-based strategies to treat them properly. CONCLUSIONS: Patients with hematological malignancies treated with bendamustine and anti-CD20 antibodies had a significant risk of prolonged and relapsing course of COVID-19. Specific preventive and therapeutic strategies should be developed for this group of patients.

4.
Commun Biol ; 5(1): 1376, 2022 12 15.
Article in English | MEDLINE | ID: covidwho-2212034

ABSTRACT

Little is known about SARS-CoV-2 evolution under Molnupiravir and Paxlovid, the only antivirals approved for COVID-19 treatment. By investigating SARS-CoV-2 variability in 8 Molnupiravir-treated, 7 Paxlovid-treated and 5 drug-naïve individuals at 4 time-points (Days 0-2-5-7), a higher genetic distance is found under Molnupiravir pressure compared to Paxlovid and no-drug pressure (nucleotide-substitutions/site mean±Standard error: 18.7 × 10-4 ± 2.1 × 10-4 vs. 3.3 × 10-4 ± 0.8 × 10-4 vs. 3.1 × 10-4 ± 0.8 × 10-4, P = 0.0003), peaking between Day 2 and 5. Molnupiravir drives the emergence of more G-A and C-T transitions than other mutations (P = 0.031). SARS-CoV-2 selective evolution under Molnupiravir pressure does not differ from that under Paxlovid or no-drug pressure, except for orf8 (dN > dS, P = 0.001); few amino acid mutations are enriched at specific sites. No RNA-dependent RNA polymerase (RdRp) or main proteases (Mpro) mutations conferring resistance to Molnupiravir or Paxlovid are found. This proof-of-concept study defines the SARS-CoV-2 within-host evolution during antiviral treatment, confirming higher in vivo variability induced by Molnupiravir compared to Paxlovid and drug-naive, albeit not resulting in apparent mutation selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Evolution, Molecular
5.
Viruses ; 15(2)2023 01 20.
Article in English | MEDLINE | ID: covidwho-2200902

ABSTRACT

BACKGROUND: Treatment guidelines recommend the tocilizumab use in patients with a CRP of >7.5 mg/dL. We aimed to estimate the causal effect of glucocorticoids + tocilizumab on mortality overall and after stratification for PaO2/FiO2 ratio and CRP levels. METHODS: This was an observational cohort study of patients with severe COVID-19 pneumonia. The primary endpoint was day 28 mortality. Survival analysis was conducted to estimate the conditional and average causal effect of glucocorticoids + tocilizumab vs. glucocorticoids alone using Kaplan-Meier curves and Cox regression models with a time-varying variable for the intervention. The hypothesis of the existence of effect measure modification by CRP and PaO2/FiO2 ratio was tested by including an interaction term in the model. RESULTS: In total, 992 patients, median age 69 years, 72.9% males, 597 (60.2%) treated with monotherapy, and 395 (31.8%), adding tocilizumab upon respiratory deterioration, were included. At BL, the two groups differed for median values of CRP (6 vs. 7 mg/dL; p < 0.001) and PaO2/FiO2 ratio (276 vs. 235 mmHg; p < 0.001). In the unadjusted analysis, the mortality was similar in the two groups, but after adjustment for key confounders, a significant effect of glucocorticoids + tocilizumab was observed (adjusted hazard ratio (aHR) = 0.59, 95% CI: 0.38-0.90). Although the study was not powered to detect interactions (p = 0.41), there was a signal for glucocorticoids + tocilizumab to have a larger effect in subsets, especially participants with high levels of CRP at intensification. CONCLUSIONS: Our data confirm that glucocorticoids + tocilizumab vs. glucocorticoids alone confers a survival benefit only in patients with a CRP > 7.5 mg/dL prior to treatment initiation and the largest effect for a CRP > 15 mg/dL. Large randomized studies are needed to establish an exact cut-off for clinical use.


Subject(s)
COVID-19 , Glucocorticoids , Male , Humans , Aged , Female , Glucocorticoids/therapeutic use , Critical Illness , Retrospective Studies , COVID-19 Drug Treatment
6.
Antibiotics (Basel) ; 11(8)2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-2023074

ABSTRACT

BACKGROUND: Despite the global efforts to antagonize carbapenem-resistant Acinetobacter baumannii (CRAB) spreading, it remains an emerging threat with a related mortality exceeding 40% among critically ill patients. The purpose of this review is to provide evidence concerning the best infection prevention and control (IPC) strategies to fight CRAB spreading in endemic hospitals. METHODS: The study was a critical review of the literature aiming to evaluate all available studies reporting IPC measures to control CRAB in ICU and outside ICU in both epidemic and endemic settings in the past 10 years. RESULTS: Among the 12 included studies, the majority consisted of research reports of outbreaks mostly occurred in ICUs. The reported mortality reached 50%. Wide variability was observed related to the frequency of application of recommended CRAB IPC measures among the studies: environmental disinfection (100%); contact precautions (83%); cohorting staff and patients (75%); genotyping (66%); daily chlorhexidine baths (58%); active rectal screening (50%); closing or stopping admissions to the ward (33%). CONCLUSIONS: Despite effective control of CRAB spreading during the outbreaks, the IPC measures reported were heterogeneous and highly dependent on the different setting as well as on the structural characteristics of the wards. Reinforced 'search and destroy' strategies both on the environment and on the patient, proved to be the most effective measures for permanently eliminating CRAB spreading.

7.
Commun Biol ; 5(1): 590, 2022 06 16.
Article in English | MEDLINE | ID: covidwho-1960513

ABSTRACT

Aging is a major risk factor for developing severe COVID-19, but few detailed data are available concerning immunological changes after infection in aged individuals. Here we describe main immune characteristics in 31 patients with severe SARS-CoV-2 infection who were >70 years old, compared to 33 subjects <60 years of age. Differences in plasma levels of 62 cytokines, landscape of peripheral blood mononuclear cells, T cell repertoire, transcriptome of central memory CD4+ T cells, specific antibodies are reported along with features of lung macrophages. Elderly subjects have higher levels of pro-inflammatory cytokines, more circulating plasmablasts, reduced plasmatic level of anti-S and anti-RBD IgG3 antibodies, lower proportions of central memory CD4+ T cells, more immature monocytes and CD56+ pro-inflammatory monocytes, lower percentages of circulating follicular helper T cells (cTfh), antigen-specific cTfh cells with a less activated transcriptomic profile, lung resident activated macrophages that promote collagen deposition and fibrosis. Our study underlines the importance of inflammation in the response to SARS-CoV-2 and suggests that inflammaging, coupled with the inability to mount a proper anti-viral response, could exacerbate disease severity and the worst clinical outcome in old patients.


Subject(s)
COVID-19 , Aged , Cytokines , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , T Follicular Helper Cells
8.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1957212

ABSTRACT

Ventilator-associated pneumonia (VAP) in critically ill patients with COVID-19 represents a very huge global threat due to a higher incidence rate compared to non-COVID-19 patients and almost 50% of the 30-day mortality rate. Pseudomonas aeruginosa was the first pathogen involved but uncommon non-fermenter gram-negative organisms such as Burkholderia cepacea and Stenotrophomonas maltophilia have emerged as other potential etiological causes. Against carbapenem-resistant gram-negative microorganisms, Ceftazidime/avibactam (CZA) is considered a first-line option, even more so in case of a ceftolozane/tazobactam resistance or shortage. The aim of this report was to describe our experience with CZA in a case series of COVID-19 patients hospitalized in the ICU with VAP due to difficult-to-treat (DTT) P. aeruginosa, Burkholderia cepacea, and Stenotrophomonas maltophilia and to compare it with data published in the literature. A total of 23 patients were treated from February 2020 to March 2022: 19/23 (82%) VAPs were caused by Pseudomonas spp. (16/19 DTT), 2 by Burkholderia cepacea, and 6 by Stenotrophomonas maltophilia; 12/23 (52.1%) were polymicrobial. Septic shock was diagnosed in 65.2% of the patients and VAP occurred after a median of 29 days from ICU admission. CZA was prescribed as a combination regimen in 86% of the cases, with either fosfomycin or inhaled amikacin or cotrimoxazole. Microbiological eradication was achieved in 52.3% of the cases and the 30-day overall mortality rate was 14/23 (60.8%). Despite the high mortality of critically ill COVID-19 patients, CZA, especially in combination therapy, could represent a valid treatment option for VAP due to DTT non-fermenter gram-negative bacteria, including uncommon pathogens such as Burkholderia cepacea and Stenotrophomonas maltophilia.

9.
Antibiotics (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1911148

ABSTRACT

The coronavirus disease 2019 (COVID-19)-pandemic-related overload of health systems has compromised the application of antimicrobial stewardship (AS) models and infection prevention and control (IPC) programs. We aimed to evaluate the impact of COVID-19 on antimicrobial consumption (AC) and antimicrobial resistance (AMR) in the University Hospital of Modena. A time series analysis with an autoregressive integrated moving average model was conducted from January 2015 to October 2021 to evaluate the AC in the whole hospital and the intensive care unit (ICU), the incidence density (ID) of bloodstream infections (BSIs) due to the main multidrug-resistant organisms, and of C. difficile infections (CDIs). After an initial peak during the COVID-19 period, a decrease in the trend of AC was observed, both at the hospital (CT: -1.104, p = 0.025) and ICU levels (CT: -4.47, p = 0.047), with no significant difference in the single classes. Among the Gram-negative isolates, we observed a significant increase only in the level of BSIs due to carbapenem-susceptible Pseudomonas aeruginosa (CL: 1.477, 95% CI 0.130 to 2.824, p = 0.032). Considering Gram-positive bacteria, an increase in the level of BSIs due to methicillin-resistant Staphylococcus aureus and in the trend of CDIs were observed, though they did not reach statistical significance (CL: 0.72, 95% CI -0.039 to 1.48, p = 0.062; CT: 1.43, 95% CI -0.002 to 2.863, p = 0.051; respectively). Our findings demonstrated that the increases in AMR and AC that appeared in the first COVID-19 wave may be later controlled by restoring IPC and AS programs to pre-epidemic levels. A coordinated healthcare effort is necessary to address the longer-term impact of COVID-19 on AC to avoid irreversible consequences on AMR.

10.
Intensive Care Med ; 48(6): 706-713, 2022 06.
Article in English | MEDLINE | ID: covidwho-1899124

ABSTRACT

PURPOSE: Cytomegalovirus (CMV) reactivation in immunocompetent critically ill patients is common and relates to a worsening outcome. In this large observational study, we evaluated the incidence and the risk factors associated with CMV reactivation and its effects on mortality in a large cohort of patients affected by coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). METHODS: Consecutive patients with confirmed SARS-CoV-2 infection and acute respiratory distress syndrome admitted to three ICUs from February 2020 to July 2021 were included. The patients were screened at ICU admission and once or twice per week for quantitative CMV-DNAemia in the blood. The risk factors associated with CMV blood reactivation and its association with mortality were estimated by adjusted Cox proportional hazards regression models. RESULTS: CMV blood reactivation was observed in 88 patients (20.4%) of the 431 patients studied. Simplified Acute Physiology Score (SAPS) II score (HR 1031, 95% CI 1010-1053, p = 0.006), platelet count (HR 0.0996, 95% CI 0.993-0.999, p = 0.004), invasive mechanical ventilation (HR 2611, 95% CI 1223-5571, p = 0.013) and secondary bacterial infection (HR 5041; 95% CI 2852-8911, p < 0.0001) during ICU stay were related to CMV reactivation. Hospital mortality was higher in patients with (67.0%) than in patients without (24.5%) CMV reactivation but the adjusted analysis did not confirm this association (HR 1141, 95% CI 0.757-1721, p = 0.528). CONCLUSION: The severity of illness and the occurrence of secondary bacterial infections were associated with an increased risk of CMV blood reactivation, which, however, does not seem to influence the outcome of COVID-19 ICU patients independently.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Critical Illness , Cytomegalovirus/physiology , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Humans , Intensive Care Units , Risk Factors , SARS-CoV-2
11.
Antibiotics ; 11(6):826, 2022.
Article in English | MDPI | ID: covidwho-1894123

ABSTRACT

The coronavirus disease 2019 (COVID-19)-pandemic-related overload of health systems has compromised the application of antimicrobial stewardship (AS) models and infection prevention and control (IPC) programs. We aimed to evaluate the impact of COVID-19 on antimicrobial consumption (AC) and antimicrobial resistance (AMR) in the University Hospital of Modena. A time series analysis with an autoregressive integrated moving average model was conducted from January 2015 to October 2021 to evaluate the AC in the whole hospital and the intensive care unit (ICU), the incidence density (ID) of bloodstream infections (BSIs) due to the main multidrug-resistant organisms, and of C. difficile infections (CDIs). After an initial peak during the COVID-19 period, a decrease in the trend of AC was observed, both at the hospital (CT: −1.104, p = 0.025) and ICU levels (CT: −4.47, p = 0.047), with no significant difference in the single classes. Among the Gram-negative isolates, we observed a significant increase only in the level of BSIs due to carbapenem-susceptible Pseudomonas aeruginosa (CL: 1.477, 95% CI 0.130 to 2.824, p = 0.032). Considering Gram-positive bacteria, an increase in the level of BSIs due to methicillin-resistant Staphylococcus aureus and in the trend of CDIs were observed, though they did not reach statistical significance (CL: 0.72, 95% CI −0.039 to 1.48, p = 0.062;CT: 1.43, 95% CI −0.002 to 2.863, p = 0.051;respectively). Our findings demonstrated that the increases in AMR and AC that appeared in the first COVID-19 wave may be later controlled by restoring IPC and AS programs to pre-epidemic levels. A coordinated healthcare effort is necessary to address the longer-term impact of COVID-19 on AC to avoid irreversible consequences on AMR.

12.
G Ital Nefrol ; 39(2)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1801193

ABSTRACT

Introduction: Some hemodialysis patients are reluctant to undergo COVID-19 vaccination for the fear of developing adverse events (AEs). The aim of this study was to verify the safety of the mRNA-1273 vaccine in hemodialysis patients. Methods: We conducted a retrospective analysis of in-center hemodialysis patients who underwent mRNA-1273 vaccine from March 1st to April 30th, 2021. All AEs occurring after the first and the second doses were collected and classified as local or systemic. Results: Overall, 126 patients on chronic maintenance dialysis without a prior COVID-19 diagnosis were vaccinated with two doses of mRNA-1273 vaccine. Mean age was 68 (IQR, 54,7-76) years and 53.6% of patients were aged ≥65 years. During the observational period of 68 (IQR, 66-70) days, AEs occurred in 57.9% and 61.9% of patients after the first dose and second dose, respectively. The most common AEs were: injection-site pain (61.9%), erythema (4.8%), itching (4.8%), swelling (16.7%), axillary swelling/tenderness (2.4%), fever (17.5%) headache (7.9%), fatigue (23.8%), myalgia (17.5%), arthralgia (12.7%), dyspnoea (2.4%), nausea/vomiting (7.1%), diarrhoea (5.6%), shivers (4%) and vertigo (1.6%). The rates of local AEs were similar after the first and second doses (P=0.8), whereas systemic AEs occurred more frequently after the second dose (P=0.001). Fever (P=0.03), fatigue (P=0.02) and nausea/vomiting (P=0.03) were significantly more frequent after the second dose of the vaccine. There were no age-related differences in the rate of AEs. Overall, vaccine-related AEs in hemodialysis patients seem to be lower than in the general population. Conclusion: The RNA-1273 vaccine was associated with the development of transient AEs after the first and second doses in patients on chronic maintenance hemodialysis. They were mostly local, whereas systemic AEs were more prevalent after the second dose. Overall, all AEs lasted for a few days, without any apparent sequelae.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Aged , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines/adverse effects , Fatigue/etiology , Humans , Nausea , Renal Dialysis , Retrospective Studies , SARS-CoV-2 , Vomiting
13.
Front Med (Lausanne) ; 9: 848639, 2022.
Article in English | MEDLINE | ID: covidwho-1793008

ABSTRACT

Background: The role of excessive inspiratory effort in promoting alveolar and pleural rupture resulting in air leak (AL) in patients with SARS-CoV-2 induced acute respiratory failure (ARF) while on spontaneous breathing is undetermined. Methods: Among all patients with COVID-19 related ARF admitted to a respiratory intensive care unit (RICU) and receiving non-invasive respiratory support, those developing an AL were and matched 1:1 [by means of PaO2/FiO2 ratio, age, body mass index-BMI and subsequent organ failure assessment (SOFA)] with a comparable population who did not (NAL group). Esophageal pressure (ΔPes) and dynamic transpulmonary pressure (ΔPL) swings were compared between groups. Risk factors affecting AL onset were evaluated. The composite outcome of ventilator-free-days (VFD) at day 28 (including ETI, mortality, tracheostomy) was compared between groups. Results: Air leak and NAL groups (n = 28) showed similar ΔPes, whereas AL had higher ΔPL (20 [16-21] and 17 [11-20], p = 0.01, respectively). Higher ΔPL (OR = 1.5 95%CI[1-1.8], p = 0.01), positive end-expiratory pressure (OR = 2.4 95%CI[1.2-5.9], p = 0.04) and pressure support (OR = 1.8 95%CI[1.1-3.5], p = 0.03), D-dimer on admission (OR = 2.1 95%CI[1.3-9.8], p = 0.03), and features suggestive of consolidation on computed tomography scan (OR = 3.8 95%CI[1.1-15], p = 0.04) were all significantly associated with AL. A lower VFD score resulted in a higher risk (HR = 3.7 95%CI [1.2-11.3], p = 0.01) in the AL group compared with NAL. RICU stay and 90-day mortality were also higher in the AL group compared with NAL. Conclusion: In spontaneously breathing patients with COVID-19 related ARF, higher levels of ΔPL, blood D-dimer, NIV delivery pressures and a consolidative lung pattern were associated with AL onset.

14.
Infez Med ; 30(1): 11-21, 2022.
Article in English | MEDLINE | ID: covidwho-1772285

ABSTRACT

COVID-19 is an unpredictable infectious disease caused by SARS-CoV-2. The development of effective anti-COVID-19 vaccines has enormously minimized the risk of severe illness in most immunocompetent patients. However, unvaccinated patients and non-responders to the COVID-19 vaccine are at risk of shortand long-term consequences. In these patients, the outcome of COVID-19 relies on an interplay of multiple factors including age, immunocompetence, comorbidities, inflammatory response triggered by the virus as well as the virulence of SARS-CoV-2 variants. Generally, COVID-19 is asymptomatic or mildly symptomatic in young people, but it may manifest with respiratory insufficiency requiring mechanical ventilation in certain susceptible groups of patients. Furthermore, severe SARS-CoV-2 infection induces multiorgan failure syndrome by affecting liver, kidney heart and nervous system. Since December 2019, multiple drugs have been tested to treat COVID-19, but only a few have been proven effective to mitigate the course of the disease that continues to cause death and comorbidity worldwide. Current treatment of COVID-19 patients is essentially based on the administration of supportive oxygen therapy and the use of specific drugs such as steroids, anticoagulants, antivirals, anti-SARS-CoV-2 antibodies and immunomodulators. However, the rapid spread of new variants and the release of new data coming from the numerous ongoing clinical trials have created the conditions for maintaining a continuous updating of the therapeutic management of COVID-19 patients. Furthermore, we believe that a well-established therapeutic strategy along with the continuum of medical care for all patients with COVID-19 is pivotal to improving disease outcomes and restoring healthcare care fragmentation caused by the pandemic. This narrative review, focusing on the therapeutic management of COVID-19 patients, aimed to provide an overview of current therapies for (i) asymptomatic or mildly/moderate symptomatic patients, (ii) hospitalized patients requiring low-flow oxygen, (iii) high-flow oxygen and (iv) mechanical ventilation.

15.
BMJ Open ; 12(1): e054069, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1606566

ABSTRACT

OBJECTIVE: The first COVID-19-19 epidemic wave was over the period of February-May 2020. Since 1 October 2020, Italy, as many other European countries, faced a second wave. The aim of this analysis was to compare the 28-day mortality between the two waves among COVID-19 hospitalised patients. DESIGN: Observational cohort study. Standard survival analysis was performed to compare all-cause mortality within 28 days after hospital admission in the two waves. Kaplan-Meier curves as well as Cox regression model analysis were used. The effect of wave on risk of death was shown by means of HRs with 95% CIs. A sensitivity analysis around the impact of the circulating variant as a potential unmeasured confounder was performed. SETTING: University Hospital of Modena, Italy. Patients admitted to the hospital for severe COVID-19 pneumonia during the first (22 February-31 May 2020) and second (1 October-31 December 2020) waves were included. RESULTS: During the two study periods, a total of 1472 patients with severe COVID-19 pneumonia were admitted to our hospital, 449 during the first wave and 1023 during the second. Median age was 70 years (IQR 56-80), 37% women, 49% with PaO2/FiO2 <250 mm Hg, 82% with ≥1 comorbidity, median duration of symptoms was 6 days. 28-day mortality rate was 20.0% (95% CI 16.3 to 23.7) during the first wave vs 14.2% (95% CI 12.0 to 16.3) in the second (log-rank test p value=0.03). After including key predictors of death in the multivariable Cox regression model, the data still strongly suggested a lower 28-day mortality rate in the second wave (aHR=0.64, 95% CI 0.45 to 0.90, p value=0.01). CONCLUSIONS: In our hospitalised patients with COVID-19 with severe pneumonia, the 28-day mortality appeared to be reduced by 36% during the second as compared with the first wave. Further studies are needed to identify factors that may have contributed to this improved survival.


Subject(s)
COVID-19 , Pandemics , Aged , Female , Hospital Mortality , Humans , Intensive Care Units , Italy/epidemiology , Male , SARS-CoV-2 , Tertiary Care Centers
16.
Infez Med ; 29(4): 538-549, 2021.
Article in English | MEDLINE | ID: covidwho-1579085

ABSTRACT

Cardiovascular complications after a SARS-CoV-2 infection are a phenomenon of relevant scientific interest. The aim of this study was to analyze the onset of post-COVID-19 cardiovascular events in patients hospitalized in a tertiary care center. This is a retrospective study conducted on patients hospitalized over a period of three months. The patients were older than 18 years of age and had a diagnosis of COVID-19 infection confirmed from a nasopharyngeal swab sample. Anamnestic and clinical-laboratory data were collected. Cardiovascular events at 30 days were defined as follows: arrhythmias, myocardial infarction, myocarditis, and pulmonary embolism. Univariate analysis (Student's t-test or Mann-Whitney U test, as appropriate) and multivariate analysis (multinomial logistic regression) were applied to the data. A total of 394 patients were included; they were mostly males and had a median age of 65.5 years. Previous cardiovascular disease was present in 14.7% of patients. Oxygen therapy was required for 77.9%, and 53% received anticoagulant therapy. The overall 30-day mortality was 20.3%. A cardiovascular event developed in 15.7% of the subjects. These were mainly pulmonary embolism (9.4%), followed by arrhythmias (3.3%), myocardial infarction (2.3%), and myocarditis (0.8%). Patients who developed cardiovascular events upon univariate analysis were significantly older, with major comorbidities, a more compromised respiratory situation, and a higher mortality rate. Multivariate analysis revealed independent factors that were significantly associated with the development of cardiovascular events: hypertension, endotracheal intubation, and age older than 75 years. In patients with COVID-19, the development of a cardiovascular event occurs quite frequently and is mainly seen in elderly subjects with comorbidities (especially hypertension) in the presence of a severe respiratory picture.

17.
JAC Antimicrob Resist ; 3(4): dlab188, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575038

ABSTRACT

OBJECTIVES: To describe our real-life experience with cefiderocol in XDR and difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections without any other available treatment options. METHODS: We included patients with a proven infection due to an XDR/DTR-P, who had failed on previous regimens, and were treated with cefiderocol, following them prospectively to day 90 or until hospital discharge or death. RESULTS: Seventeen patients treated for >72 h with cefiderocol were included: 14 receiving combination regimens (82.4%) and 3 receiving monotherapy (17.6%). Fourteen patients were males (82%) with a median age of 64 years (IQR 58-73). Fifteen patients (88.2%) were admitted to the ICU and five had septic shock (29%). Seven cases (41.2%) were ventilator-associated pneumonia, of which 71% (5/7) occurred in COVID-19 patients. Four were complicated intrabdominal infections, one ecthyma gangrenosum, one nosocomial pneumonia and one empyema, one osteomyelitis, one primary bacteraemia, and one nosocomial external ventricular drainage meningitis. Clinical cure and microbiological cure rates were 70.6% and 76.5%, respectively. There were six deaths (35.3%) after a median of 8 days (IQR 3-10) from the end of treatment, but only two of them (11.7%) were associated with P. aeruginosa infection progression. CONCLUSIONS: Our experience collecting this large case series of DTR-P treated with cefiderocol may help clinicians consider this new option in this hard-to-manage setting. Our results are even more relevant in the current scenario of ceftolozane/tazobactam shortage. Importantly, this is the first study providing real-life data indicating adequate cefiderocol concentrations in CSF.

18.
Eur J Immunol ; 52(3): 484-502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1555185

ABSTRACT

To better understand the mechanisms at the basis of neutrophil functions during SARS-CoV-2, we studied patients with severe COVID-19 pneumonia. They had high blood proportion of degranulated neutrophils and elevated plasma levels of myeloperoxidase (MPO), elastase, and MPO-DNA complexes, which are typical markers of neutrophil extracellular traps (NET). Their neutrophils display dysfunctional mitochondria, defective oxidative burst, increased glycolysis, glycogen accumulation in the cytoplasm, and increase glycogenolysis. Hypoxia-inducible factor 1α (ΗΙF-1α) is stabilized in such cells, and it controls the level of glycogen phosphorylase L (PYGL), a key enzyme in glycogenolysis. Inhibiting PYGL abolishes the ability of neutrophils to produce NET. Patients displayed significant increases of plasma levels of molecules involved in the regulation of neutrophils' function including CCL2, CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-γ. Our data suggest that metabolic remodelling is vital for the formation of NET and for boosting neutrophil inflammatory response, thus, suggesting that modulating ΗΙF-1α or PYGL could represent a novel approach for innovative therapies.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/blood , Case-Control Studies , Cohort Studies , Cytokines/blood , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Glycogen Phosphorylase, Liver Form/blood , Granulocytes/immunology , Granulocytes/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Male , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Middle Aged , Neutrophil Activation , Peroxidase/blood , Respiratory Burst , Severity of Illness Index
19.
Microorganisms ; 9(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1403851

ABSTRACT

BACKGROUND: Herpes simplex 1 co-infections in patients with COVID-19 are considered relatively uncommon; some reports on re-activations in patients in intensive-care units were published. The aim of the study was to analyze herpetic re-activations and their clinical manifestations in hospitalized COVID-19 patients, performing HSV-1 PCR on plasma twice a week. METHODS: we conducted a prospective, observational, single-center study involving 70 consecutive patients with severe/critical SARS-CoV-2 pneumonia tested for HSV-1 hospitalized at Azienda Ospedaliero-Universitaria of Modena. RESULTS: of these 70 patients, 21 (30.0%) showed detectable viremia and 13 (62%) had clinically relevant manifestations of HSV-1 infection corresponding to 15 events (4 pneumonia, 5 herpes labialis, 3 gingivostomatitis, one encephalitis and two hepatitis). HSV-1 positive patients were more frequently treated with steroids than HSV-1 negative patients (76.2% vs. 49.0%, p = 0.036) and more often underwent mechanical ventilation (IMV) (57.1% vs. 22.4%, p = 0.005). In the unadjusted logistic regression analysis, steroid treatment, IMV, and higher LDH were significantly associated with an increased risk of HSV1 re-activation (odds ratio 3.33, 4.61, and 16.9, respectively). The association with the use of steroids was even stronger after controlling for previous use of both tocilizumab and IMV (OR = 5.13, 95% CI:1.36-19.32, p = 0.016). The effect size was larger when restricting to participants who were treated with high doses of steroids while there was no evidence to support an association with the use of tocilizumab Conclusions: our study shows a high incidence of HSV-1 re-activation both virologically and clinically in patients with SARS-CoV-2 severe pneumonia, especially in those treated with steroids.

20.
PLoS One ; 16(8): e0251378, 2021.
Article in English | MEDLINE | ID: covidwho-1354756

ABSTRACT

BACKGROUND: The benefit of tocilizumab on mortality and time to recovery in people with severe COVID pneumonia may depend on appropriate timing. The objective was to estimate the impact of tocilizumab administration on switching respiratory support states, mortality and time to recovery. METHODS: In an observational study, a continuous-time Markov multi-state model was used to describe the sequence of respiratory support states including: no respiratory support (NRS), oxygen therapy (OT), non-invasive ventilation (NIV) or invasive mechanical ventilation (IMV), OT in recovery, NRS in recovery. RESULTS: Two hundred seventy-one consecutive adult patients were included in the analyses contributing to 695 transitions across states. The prevalence of patients in each respiratory support state was estimated with stack probability plots, comparing people treated with and without tocilizumab since the beginning of the OT state. A positive effect of tocilizumab on the probability of moving from the invasive and non-invasive mechanical NIV/IMV state to the OT in recovery state (HR = 2.6, 95% CI = 1.2-5.2) was observed. Furthermore, a reduced risk of death was observed in patients in NIV/IMV (HR = 0.3, 95% CI = 0.1-0.7) or in OT (HR = 0.1, 95% CI = 0.0-0.8) treated with tocilizumab. CONCLUSION: To conclude, we were able to show the positive impact of tocilizumab used in different disease stages depicted by respiratory support states. The use of the multi-state Markov model allowed to harmonize the heterogeneous mortality and recovery endpoints and summarize results with stack probability plots. This approach could inform randomized clinical trials regarding tocilizumab, support disease management and hospital decision making.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Respiratory Therapy/methods , Aged , Female , Humans , Male , Markov Chains , Middle Aged , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiration, Artificial , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL